Cutting power consumption in cloud computing

阳振坤

Senior scientist, Baidu yangzhenkun@baidu.com 2009.6.26

Agenda

- Background information
- Power consumption in IDC
- Cutting power consumption
- Summary

What is cloud computing

- An emerging computing technology that uses the internet and <u>central remote servers (IDC)</u> to maintain data and applications
- Enabling <u>much more efficient computing</u> by centralizing storage, memory, processing and bandwidth
 - Machine idle ratio: ~70% vs. 90% in traditional
- A kind of large-scale distributed (usually heterogeneous) system

IDC: some numbers

- The data center in Dallas, Oregon: ~50 MW
 - > 50MW*0.8/200W=0.2M
 - > Average electricity consumption in USA: ~900kwh/month/family, or 1.25KW
- Power consumption is the major cost and constraint of IDC
- About 7000 IDCs in USA

 Usually it is critical to protect the cooling system by UPS

Power consumption in IDC

- Machines
 - 50,000 machines (300W each) consume 1.5 MW by themselves
- Network device
- Cooling system
- UPS array and their batteries
 - For both machines and cooling system
- Lighting
- Power Usage Effectiveness (PUE)

Cooling system

- Water-cooling vs. air-cooling
 - Heat transfer coefficient: 100:1
 - > Air-cooling device is simpler and cheaper and more suitable for home and ordinary office
 - The vast majority of machines are air-cooling
- "Free cooling"

UPS array

- Contribute to about 11 percent of power consumption and also produce heat
- Obsolete UPS array?
 - Internal battery as standby power for machines
 - Activating standby power (usu. diesel generators) for cooling system in a few minutes after power failure

Lighting

- Contribute to about 3 percent of power consumption and also produce heat
- To cut power consumption by lighting
 - Energy-saving lamps
 - > Voice-activated switch...

Machines

- Processor
- Memory
 - Larger capacity vs. smaller capacity
 - FB/ECC vs. ordinary RAM
- Power supply efficiency
 - > ATX: 70%~75%
 - > High (400) volt DC vs. AC
- Hard disk
 - > HDD vs. SSD disk
 - > 3.5" vs. 2.5" hard disk

Machines

- Redundant components
 - Graphics adapter, USB ports, DVD driver, sound chip...
- Cooling system
 - > Water-cooling vs. air-cooling
- Machine idle ratio
 - > Usually 70% or lower. Can it be cut idle ratio more?
- Standby or hibernation
 - Is it possible in cloud computing?

Data replication in cloud computing

Data replication heartbeat, ...

Some data become unavailable if many machines unavailable

Cluster: an example

Requirements

- 50TB of data, 2,000,000 queries/s and 90% cache hit rate
- Single machine: 100~400 queries/s, 0.15~1.8TB disk capacity
- Cluster planning
 - > 2,000,000*(1-90%)/400 = 500 machines
 - > 50TB*3/500 = 0.3TB/machine
- Can we make half or 1/3 of machines standby or hibernated?

Cluster: an example (cont'd)

Make machines standby/hibernated one by one

5

4

5

6

6

- > May lead to mass data shuffle, or
- Requires data distribution

D

Μ

Summary

- Power is the major constraint and cost of IDC
- To cut power consumption
 - Computer machines
 - Cooling system
 - > UPS
 - > System infrastructure...
- Whole industry should be involved

• Q & A